Dependence of flame propagation on pressure and pressurizing gas for an Al / CuO nanoscale thermite W 911 NF - 04 - 1 - 0178
نویسنده
چکیده
The pressure dependence of flame propagation in an Al/CuO nanoscale thermite was studied. Experiments were performed by loosely packing the Al/CuO mixture in an instrumented burn tube, which was placed in a large volume, constant pressure chamber with optical windows. A high-speed camera was used to take photographic data, and six pressure transducers equally spaced along the length of the burn tube were used to measure the local transient pressure. Ambient pressures were varied between 0 and 15 MPa, and three different pressurizing gases were used: argon, helium, and nitrogen. Three modes of propagation were observed. The pressure at which the mode of propagation changed was similar for argon and nitrogen, however, when pressurized with helium, transition occurred at lower pressures. In the low-pressure regime ( 0–2 MPa) a constant velocity mode with speeds on the order of 1000 m/s was observed. In this region, a convective mode of propagation was dominant. An accelerating regime was observed for a pressure range of approximately 2–5 MPa in argon and nitrogen, with speeds ranging from 100 to 800 m/s. In helium, however, if an accelerating region existed it occurred over a narrow pressure range which was not observed in the present experiments. An oscillating regime was observed in all three gases, in a pressure range of 5–9 MPa for argon and nitrogen, and a range of 2–4 MPa for helium. Velocities in this region are bimodal, and differ by orders of magnitude, suggesting that the propagation mechanism was oscillating between convective and conductive. At relatively high ambient pressures, a constant velocity mode with speeds on the order of 1 m/s was observed for all three gases. The conductive mode of propagation was likely dominant in this region. 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
منابع مشابه
THE EFFECT OF ADDED AL2O3 ON THE PROPAGATION BEHAVIOR OF AN Al/CuO NANOSCALE THERMITE W911NF-04-1-0178
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, includ...
متن کاملاثر افزودنی منیزیم- ویتون بر رفتار حرارتی مخلوطهای ترمیتی Al/nm-CuO
Traditional thermites are generally composed of micron-Al particles. These kinds of thermites usually exhibit poor reactivity characteristics such as a poor heat release and high ignition temperature. In this research, the influence of Mg-Viton as additive on the thermal behavior of Al/CuO systems was verified using thermal analysis techniques. In this paper, thermite mixtures are prepared usin...
متن کاملMultimillion Atom Reactive Simulations of Nanostructured Energetic Materials W 911 NF - 04 - 1 - 0178 sub 2781 - USC - DOA - 0178
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, includ...
متن کاملPre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity
The main direction in increasing reactivity of aluminum (Al) particles for energetic applications is reduction in their size down to nanoscale. However, Al nanoparticles are 30-50 times more expensive than micron scale particles and possess safety and environmental issues. Here, we improved reactivity of Al micron scale particles by synthesizing pre-stressed core-shell structures. Al particles ...
متن کاملComputational Modeling of Combustion Wave in Nanoscale Thermite Reaction
Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanosc...
متن کامل